Evaluation of long-term durability of engineered barrier system (EBS) of bentonite and cementitious materials by migration technique

K. Nakarai*, M. Watanabe*, T. Sugiyama**, Y. Tsuji*

* Gunma University, Japan** Hokkaido University, Japan

Evaluation of long-term durability of engineered barrier system (EBS) of bentonite and cementitious materials by migration technique

K. Nakarai*, M. Watanabe*, T. Sugiyama**, Y. Tsuji*

Contents of this presentation

1. Introduction

Concept of EBS for LLW in Japan Degradation of EBS at cement/bentonite interaction

2. Test method

Acceleration test by electrical migration technique

3. Experimental procedures and results

- 1. Investigation of effect of dry density on degradation of EBS at cement/bentonite interaction
- 2. Investigation of effect mixed NaHCO₃ on degradation of EBS at cement/bentonite interaction

4. Conclusions

Contents of this presentation

1. Introduction

Concept of EBS for LLW in Japan

Degradation of EBS at cement/bentonite interaction

2. Test method

Acceleration test by electrical migration technique

3. Experimental procedures and results

- 1. Investigation of effect of dry density on degradation of EBS at cement/bentonite interaction
- 2. Investigation of effect mixed NaHCO₃ on degradation of EBS at cement/bentonite interaction

4. Conclusions

EBS for LLW in Japan

Underground cavern type disposal facility to isolate low-level radioactive waste (http://www.enecho.meti.go.jp/rw/gaiyo/gaiyo03-3.html)

Repository concept of LLW in Japan

Extremely long-term stability for several tens thousands years is required.

Durability problem of EBS for LLW in Japan

To evaluate extremely long-term stability during tens thousands of years

Two experimental plans in this study

Approach I

Exp I

Reduce negative cement/bentonite interaction

Increase in dry density of bentonite

Approach II

Control cement/bentonite interaction for increasing stability $\boxed{Exp \parallel}$ Mixing NaHCO₃ for creating additional layer of CaCO₃

Next topic

1. Introduction

Concept of EBS for LLW in Japan

Degradation of EBS due to cement/bentonite interaction

2. Test method

Acceleration test by electrical migration technique

3. Experimental procedures and results

- 1. Investigation of effect of dry density on degradation of EBS due to cement/bentonite interaction
- 2. Investigation of effect mixed NaHCO₃ on degradation of EBS due to cement/bentonite interaction

4. Conclusions

Acceleration test by electrical migration technique

To accelerate ion transport by applying electric potential gradient

Several studies have been reported. (e.g. Saito et al. 1997)

Ca leaching **Degradation**

Next topic

1. Introduction

Concept of EBS for LLW in Japan

Degradation of EBS due to cement/bentonite interaction

2. Test method

Acceleration test by electrical migration technique

3. Experimental procedures and results

- 1. Investigation of effect of dry density on degradation of EBS due to cement/bentonite interaction
- 2. Investigation of effect mixed NaHCO₃ on degradation of EBS due to cement/bentonite interaction

4. Conclusions

Exp I: Influence of dry density (Specimen)

[Cementitious material] Concrete Cement: OPC W/C = 55%

[Bentonite material] Bentonite sand mixture Bentonite: Kunigel V1 Bentonite:Sand = 7:3

4 specimens of bentonite sand mixture

Name	Dry Density	Water Content	Compaction times		
of specimen	g/cm ³	%	/ Layer		
Bt16	1.6	28.6	11		
Bt17	1.7	26.1	19		
Bt18	1.8	22.6	38		
Bt19 1.9		15.0	150, 200		

Exp I: Measurement after electrical migration test

 $Ca(OH)_2$,

Concrete

No.	Dry density, g/cm ³	Water content, %		
Bt16	1.6	28.6		
Bt17	1.7	26.1		
Bt18	1.8	22.6		
Bt19	1.9	15.0		

Swelling capacity Cation concentration EPMA (Bt19)

Bentonite sand mixture

Exp I: Measurement after electrical migration test

No.	Dry density, g/cm ³	Water content, %		
Bt16	1.6	28.6		
Bt17	1.7	26.1		
Bt18	1.8	22.6		
Bt19	1.9	15.0		

Bentonite sand mixture

Result of TGA: Degradation of concrete

 $Ca(OH)_2$: leach from concrete first \implies

Measurement of residual Ca(OH)₂

Result of EPMA: Cations in bentonite (Bt19)

Result of cations and swelling capacity of bentonite

Result of cations and swelling capacity of bentonite

Concrete side: Swelling capacities decrease with increase in Ca/Na

Change to Ca-type

Result of cations and swelling capacity of bentonite

Bt19: Decrease in swelling capacity was reduced

Low conductivity can be maintained by using high dry density bentonite

Next topic

1. Introduction

Concept of EBS for LLW in Japan

Degradation of EBS due to cement/bentonite interaction

2. Test method

Acceleration test by electrical migration technique

3. Experimental procedures and results

- 1. Investigation of effect of dry density on degradation of EBS due to cement/bentonite interaction
- 2. Investigation of effect mixed NaHCO₃ on degradation of EBS due to cement/bentonite interaction

4. Conclusions

Exp II: Utilization of cement/bentonite interaction

Reference: Reduce leaching by HCO₃⁻

Kurashige et al. (2005) have shown that HCO_3^- in ground water reduce leaching of cementitious materials.

In this study, we aim to get this additional effect intentionally in the proposed artificial system.

Exp II: Acceleration test by electrical migration technique

To accelerate ion transport by applying electrical gradient

Ex) Saito et al. investigated calcium leaching

Ca leaching Degradation

Exp II: Influence of mixing NaHCO₃ (Specimen)

[Cementitious material] Cement paste Cement: OPC W/C = 60%

[Bentonite material] Bentonite sand mixture Bentonite: Kunigel V1 Bentonite:Sand = 7:3 Dry density = 1.6 g/cm³

4 specimens of bentonite sand mixture

Name	NaHCO ₃	Concentration	Remarks
of specimen	mass %	g/litter	
C0	0	0	No mixing
C0.4	0.4	10	
C4	4.1	103	Saturation
C7	7.1	103	

Exp II: Measurement after electrical migration test

No.	NaHCO ₃	Concentration		
	mass %	g/litter		
C0	0	0		
C0.4	0.4	10		
C4	4.1	103		
C7	7.1	103		

After 140 hours electrical migration

Cement TGA Ca(OH)₂, <u>CaCO₃</u>

Swelling capacity Cation concentration Bentonite sand mixture

Exp II: Measurement after electrical migration test

No.	NaHCO ₃	Concentration		
	mass %	g/litter		
C0	0	0		
C0.4	0.4	10		
C4	4.1	103		
C7	7.1	103		

Swelling capacity Cation concentration Bentonite sand mixture

Result of TGA: Degradation of cement paste

Result of TG-DTA: Degradation of cement paste

Result of TG-DTA: Degradation of cement paste

Result of Cations: Degradation of bentonite

In specimen without NaHCO3, cation's ratio increased at the surface layers

In specimens with large NaHCO₃, increase in cation's ratio were significantly reduced

Result of swelling capacity: Degradation of bentonite

In specimen without NaHCO₃, swelling capacity decreased at the surface layers

In specimens with large NaHCO₃, decrease in swelling capacity were significantly reduced

Next topic

1. Introduction

Concept of EBS for LLW in Japan

Degradation of EBS due to cement/bentonite interaction

2. Test method

Acceleration test by electrical migration technique

3. Experimental procedures and results

- 1. Investigation of effect of dry density on degradation of EBS due to cement/bentonite interaction
- 2. Investigation of effect mixed NaHCO₃ on degradation of EBS due to cement/bentonite interaction

4. Conclusions

Conclusions

In this study, the long-term durability of the engineered barriers system was investigated by the migration technique.

Firstly, the effect of dry density of bentonite-sand mixtures was investigated.

The experimental results showed the use of the bentonite sand mixture having high dry density was effective with regard to the reduction in the risk of the alteration.

Secondly, the effect of mixing of NaHCO₃ to the bentonitesand mixture was investigated.

The experimental results showed the mixing of NaHCO₃ clearly reduced the degradation of cementitious materials and bentonite because of precipitation of $CaCO_3$.

Thank you for your kind attention!

Specimens

Result of cation's ration in bentonite

Goncrete side:

Swelling capacity decrease with increase in Ca/Na

Change to Ca-type

ベントナイトのおける膨潤力と陽イオン量の関係

炭酸水素ナトリウム混合では Ca/Naが高いが膨潤力低下はわずか CaとNaの膨潤への貢献度合いを 足し合わせることにより膨潤力を 統一的に評価できる可能性も

電流の経時変化

合計Ca量の分布

ベントナイトの試験

日本ベントナイト工業標準試験方法に準拠

浸出陽イオン量・・・CaイオンとNaイオンの浸出陽イオン量比(Ca/Na)で評価 膨潤力・・・150µmに粉砕したベントナイト砂混合土の試料2.0gを,蒸留水100mlを入 れた100mlのメスシリンダーに加え,24時間静置後,容器内に堆積した試料の見掛け容 積を読みとることで測定

膨潤力測定例(C0の1~4層目)

ベントナイトにおける浸出陽イオン量

	イオン	浸出陽イオン量 mea/100a							
供試体名		∔ ⊓₩¤/≠							
		<u> </u>	1層目	2層目	3層目	4層目	5層目	6層目	7層目
C0	Са	40.5	92.3	73.3	69.9	43.8	41.0	53.0	73.0
	Na	59.3	18.6	21.5	28.4	55.5	72.0	84.3	97.8
C0.4	Ca	41.0	77.5	82.9	40.1	34.3	27.4	26.9	25.4
	Na	66.0	16.7	24.9	61.1	71.9	83.9	82.5	99.4
C4	Ca	42.9	92.8	55.1	37.6	35.1	40.3	39.8	38.9
	Na	93.4	22.2	56.2	98.1	80.4	95.6	95.7	116.4
C7	Ca	44.2	112.8	48.9	46.4	48.3	48.0	46.8	43.6
	Na	113.4	38.8	91.2	107.3	108.3	107.4	121.0	135.1

表-6 浸出陽イオン量測定の結果

Swelling Capacity

Main component is montmorillonite

Results of XRD (Bentonite)

Bt19: 1st to 3rd Layer \rightarrow **Ca-type**

Bt16, **Bt17**, **Bt18**: 1^{st} and 2^{nd} Layer \rightarrow Process of change to **Ca-type**?

Changing of type start from concrete side

Cations and Swelling Capacities (Bentonite)

Method of Measurement of Swelling capacity

Swelling Capacity Ratio: Swelling capacity divided by mean value of swelling capacity of 6th and 7th in each layer

Size of Geological Disposal Structure (Low-Level)

Size of a section is 7.5m wide, 7.5m high, and 9m deep.